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The semi-Lagrangian representation of advection allows circumventing of the
CFL restriction on time steps, which is especially severe for finite-difference mod-
els on the regular latitude–longitude grid. The distinct features of the presented
semi-Lagrangian model are the use of vorticity and divergence as prognostic vari-
ables in conjunction with the fourth-order compact finite differences on the unstag-
gered regular latitude–longitude grid. The key point of this approach is the solu-
tion of the Poisson equations on the sphere, which is necessary for reconstructing
the velocity field from vorticity and divergence. The accurate and efficient direct
solver for this problem is described. The results of the standard test set for shallow-
water equations on the sphere demonstrate the accuracy and computational effi-
ciency of the model with the time steps several times greater than in the Eulerian
model. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The spectral method of horizontal discretization for global atmospheric models is dom-
inant in climate modeling and, to a smaller extent, in numerical weather prediction. As
the resolution of models increases, the cost and complexity of parallel implementation
of the Legendre transforms associated with the spectral method grows dramatically, and
there are an increasing number of articles devoted to the alternative ways of horizontal dis-
cretization of the atmospheric equations on the sphere based on spectral element methods
[22], pseudospectral methods [20], double Fourier series [3], and finite-element methods on
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icosahedral grids [5]. There are also concerns about the stability of calculation of associated
Legendre functions for spectral methods for very high resolution.

Besides the obvious requirements of accuracy and computational efficiency on parallel
computers, the dynamical core of a modern atmospheric model should be suitable for a va-
riety of applications, ranging from short-term weather forecasting using variable resolution
over the globe to multiyear climate simulations. Thus the possibility of using the variable
resolution in at least one of the horizontal coordinates and rotated poles seems to be a
desirable feature. While a rotated pole does not represent a problem, the most convenient
and flexible way to implement the variable resolution feature in an atmospheric model is
the finite-difference, finite-element, or finite-volume approach.

Most operational models for numerical weather prediction and some climate models,
both spectral and finite difference, use the semi-Lagrangian representation of advection,
which allows circumventing of the CFL restriction on time steps [21, 24, 33], which is
especially severe for finite-difference models on the regular latitude–longitude grid on the
sphere due to convergence of the meridians toward the pole. So, for semi-Lagrangian models
the difference between spectral and finite-difference models now lies in the discretization of
the horizontal nonadvective derivatives and the method for solution of the elliptic problem
arising in the semi-implicit scheme.

In this paper, we present the global semi-Lagrangian finite-difference shallow-water
model. The distinct features of this model are the use of vorticity and divergence as prog-
nostic variables in conjunction with the fourth-order compact finite differences on the
unstaggered regular latitude–longitude grid. These features are interrelated.

It was shown in [15, 17] for finite-difference models that the geostrophic adjustment and
Rossby wave propagation are better reproduced by the unstagered grid combined with the
vorticity-divergence formulation than by the standard u–v formulation on the staggered C
grid. The unstaggered grid applied to the semi-Lagrangian model also allows use of a single
set of trajectories for all variables (while for a staggered grid it is necessary either to use
the multiple set of trajectories or to make additional interpolations).

On the other hand, the unstaggered grid makes it possible to apply easily compact high-
order finite differences. Otherwise, one would need to apply high-order interpolation be-
tween half- and integer nodes of the grid (for example, to calculate the Coriolis term on the
C grid).

If one uses the vorticity-divergence formulation, the wind field is obtained from the hor-
izontal stream function and velocity potential, which are in turn obtained from the vorticity
and divergence solving the Poisson equations. While this problem is trivial for spectral
models, the success of a finite-difference vorticity-divergence model strongly depends on
the accuracy and efficiency of this part of the model.

The results for the first version of the presented shallow-water model based on the potential
vorticity equation were published in 1996 [26]. This model achieved an accuracy of the
spectral model of comparable resolution with the time step four times greater than with the
reference spectral Eulerian model.

However, at that time it was not clear to what extent this approach could be generalized
to the 3D case. Now the SL-AV (semi-Lagrangian, absolute vorticity) 3D global atmo-
spheric model for numerical weather prediction and potentially for climate modeling has
been created and successfully validated [28, 29]. It also demonstrates good efficiency on
parallel computers [28]. The SL-AV model uses absolute vorticity as one of the prognos-
tic variables and compact finite differences on the unstaggered grid. The early versions



182 MIKHAIL A. TOLSTYKH

of the shallow-water model and SL-AV model also used fourth-order compact schemes,
but the elliptic solvers for the reconstruction of the velocity field and the semi-implicit
time stepping, though more accurate than standard second-order solvers, were in fact only
second-order accurate. While giving good forecast scores, the SL-AV model showed some
deficiencies in the surface pressure field after a six-month integration in the framework of
the Held–Suarez test [7]. The problem was fixed with the implementation of a more complex
algorithm yielding O(h3) global accuracy for the reconstruction of the velocity field and
the semi-implicit scheme. The following 3-year integration of the dynamical core of the
SL-AV model showed that the problem with the surface pressure field had disappeared.
It was decided to implement all the changes in the horizontal discretization of the SL-AV
model back to the shallow-water model [26], and to carry out the standard tests for shallow-
water models on the sphere described in [32].

In Section 2, the basic numerical approaches are presented which are used for horizontal
discretization of nonadvective terms in our global semi-Lagrangian model. In particular,
we investigate the compact high-order finite-difference solver on a sphere for the problem
of obtaining the wind velocities from vorticity and divergence and compare it with the con-
ventional second-order approach. The fast Fourier transforms in the longitudinal direction
are used in this part.

Section 3 describes the model, and the results of the standard test set for shallow-water
models on the sphere [32] are given in Section 4.

2. RECONSTRUCTION OF THE VELOCITY FIELD FROM VORTICITY

AND DIVERGENCE ON THE SPHERE

We start with the discretization of basic differential operators in the spherical coordinate
system. These operators are the gradient operator,

∇ f = i
a cos �

∂ f

∂�
+ j

a

∂ f

∂�
,

and the Laplacian operator,

∇2 f = 1

a2 cos2 �

∂2 f

∂�2
+ 1

a2 cos �

(
∂

∂�
cos �

∂ f

∂�

)

where a is the Earth radius, � the longitude, and � the latitude.
There is also need to calculate the divergence and the vertical component of the relative

vorticity from the horizontal velocity field V = (u, v),

D = ∇ · V = 1

a cos �

(
∂u

∂�
+ ∂v cos �

∂�

)
,

� = k · (∇ × V) = 1

a cos �

(
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∂�
− ∂u cos �

∂�

)

where i, j, and k are the unit vectors in the longitudinal, latitudinal, and vertical directions,
respectively.
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We use the following Padé compact scheme to discretize these operators.
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+ O(�x4). (1)

This scheme is also known as the Numerov scheme [16]. It can be also obtained from
finite-element considerations on a uniform mesh. In atmospheric modeling, it was recently
used in [20]. This formula is used to calculate the gradient and the longitudinal part of the
divergence.

The grid which is used in the proposed model includes the points at the poles. Special
care is taken while calculating the latitudinal component of the gradient operator near
the pole singularity. In terms of Fourier expansion coefficients in longitudinal (west–east)
direction, a vector field (i.e., the gradient) can have only a first coefficient not equal to zero
at the poles, while a scalar field under differentiation has only a zeroth Fourier component
there. The calculation of the latitudinal component of the gradient operator is carried out
in Fourier space (at least near the poles). The polar value of the gradient field is defined
from smoothness conditions on the latitudinal component using the interpolation of the first
Fourier coefficient to the pole point.

The fourth-order formula for the longitudinal derivative in the Laplacian operator is
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To discretize the latitudinal component of the Laplacian and divergence operators, the
following approximation to the first derivative is used (e.g., [9]):
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This formula can be rewritten in symbolic form as

∂ f

∂x
= M−1� f,

where M is the symmetric tridiagonal operator with diagonals (1/24, 11/12, 1/24) and
� f = fi+1/2 − fi−1/2

�x .
One can see that Eq. (3) involves half-nodes of the grid. One can show that successive

application of (3) to the discretization of the first derivatives in the latitudinal component
of the Laplacian results in the fourth-order-accurate conservative scheme.

Consider now the application of the fourth-order compact finite differences to the solution
of the Poisson equation on the sphere:

1

a2 cos2 �

∂2g

∂�2
+ 1

a2 cos �

(
∂

∂�
cos �

∂g

∂�

)
= F. (4)

Of course, it is expensive to implement this approach in a straightforward way in the
multidimensional problem. We use the Fourier representation in the longitudinal direction
in the solver, replacing compact finite differences in this direction by their Fourier images
(see the second-order solver in [14] and references herein). For example, to differentiate
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some function f in longitude equivalently to (1), we have to multiply each complex Fourier
coefficient f̂ k by i〈k〉, where

〈k〉 = sin(k��)

��(1 − 2/3 sin2(k��/2))

and i = √−1, �� is the mesh size in longitude.
Similarly, to calculate the second derivative, each Fourier coefficient is multiplied by

−〈k2〉 with

〈k2〉 = 4 sin2
(

k��
2

)
��2(1 − 1/3 sin2(k��/2))

.

The longitudinal derivatives are evaluated with the above formulas instead of exact differ-
entiation in Fourier space to be consistent with the rest of the model, where these derivatives
are calculated using compact finite differences. In doing so, we also preserve the invariance
of the discretized Laplacian operator near the equator with respect to pole rotation of the
spherical coordinate system (up to fourth-order terms).

We write the discretization of the Poisson equation (4) for a nonzero longitudinal wave-
number k apart from the poles and near pole rows as

− 〈k2〉
cos � j

ĝk
j + M−1�

(
cos � j M−1�ĝk

j

) = a2 cos � j F̂ k
j ,

where j is the latitudinal index and ĝk and F̂k are the kth Fourier components of g and F ,
respectively. The grid in latitude includes the points at the poles, which have the indices 0
and N .

Introducing an auxiliary variable ẑ = M−1�ĝ, this equation can be cast into the system
of two equations, 


−M

( 〈k2〉
cos � j

)
ĝk
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j = 0
(5)

or

A j

(
ĝk

ẑk
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Note that actually ẑk
j is defined at half-nodes of the grid, but for convenience we assign

an integer index to it, so that the index j for ẑk
j runs from 0 to N − 1, while it changes from

0 to N for ĝk
j .

Near the poles, Eq. (5) is modified to avoid division by a zero value of cos � at the poles.
The resulting order of accuracy is thus reduced to third. At the poles, a scalar function can
have only a zeroth Fourier coefficient not equal to zero; so the boundary conditions for
ĝk are simply ĝk

0 = 0. For ẑk
0 (defined as half a grid step away from the pole), we use the

condition of symmetry. This results in the following matrices (example for the southern
pole):
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)
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)
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)
, Ĝk

0 = 0.

This system is solved with a 2 × 2 block-tridiagonal version of Gaussian elimination. We
precompute and store the coefficients necessary for matrix inversion that do not change in
time.

The case of longitudinal wavenumber k = 0 is considered separately, depending on the
equation to be solved, and is described further.

Consider now the problem of reconstruction of the wind velocity field from the vorticity
and divergence on the sphere. First, the pair of Poisson equations on the sphere is solved to
find the streamfunction � and velocity potential � from known vorticity � and divergence D:

∇2� = �, (6)

∇2� = D. (7)

Then the horizontal velocity components u and v are restored using the Helmholtz theorem:

u = −1

a

∂�

∂�
+ 1

a cos �

∂�

∂�
, (8)

v = 1

a cos �

∂�

∂�
+ 1

a

∂�

∂�
. (9)

The solution of the Poisson equations and the differentiation of the streamfunction and
velocity potential is carried out in Fourier space. The result is then transformed back to the
grid-point space.

Consider now the solution of Eqs. (6)–(9) for the 0th Fourier component. All longitudinal
derivatives vanish. We do not need �̂ 0 and �̂ 0 but we need their latitudinal derivatives at
integer nodes of the grid. Hence each pair of Eqs. (6), (8) and (7), (9) can be reduced to a
single equation for

û0 = −1

a

∂�̂ 0

∂�
, v̂0 = 1

a

∂�̂ 0

∂�
.
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They read

1

a cos �

∂

∂�
(û0 cos �) = −�̂ 0, (10)

1

a cos �

∂

∂�
(v̂0 cos �) = D̂0. (11)

Their discretization with the operator M−1� can be written as

�(û0 cos �) = −aM(�̂ 0 cos �),

�(v̂0 cos �) = aM(D̂0 cos �).

Here �̂ 0 and D̂0 are defined at the integer nodes of the grid, while û0, v̂0 are defined at half-
nodes. Third-order boundary conditions for these equations are derived using the third-order
formula (

∂ f

∂x

)
i+1

−
(

∂ f

∂x

)
i

= 4

�x

(
fi − 2 fi+1/2 + fi+1

)+ O(�x3),

taking into account the fact that û0, v̂0 are equal to zero at the poles. Having obtained û0 and
v̂0 at half-nodes of the grid, we interpolate them with the sixth-order compact interpolation
[9] to the integer nodes. The reason the sixth-order interpolation is used here is the very high
sensitivity of errors to the choice of interpolation. The fourth-order compact interpolation
was found to be insufficient to provide good error measures.

To solve Eqs. (8) and (9) for nonzero Fourier coefficients, both functions ĝ and ẑ from
Eq. (5) are needed. The latter is interpolated from half-nodes to integer nodes using again
the sixth-order compact interpolation.

We first use the known analytic solution to compare our approach with the standard
second-order finite differences. The second-order solver for the elliptic-type equations on
the sphere based on Fourier expansion in longitude is described in [14]. It is supplemented
by the second-order central differences for differentiation of the streamfunction and velocity
potential. Further, this solver is referred to as the standard solver.

In the analytic case, the vorticity and divergence are known in advance. The velocity field
to be restored is the initial velocity of the Rossby–Haurwitz wave number 4 [32].

u = a� cos �(1 + cos2 �(4 sin2 � − cos2 �) cos 4�),
(12)

v = −4a� cos3 � sin � sin 4�,

and the associated vorticity and divergence are

� = � sin �(2 − 30 cos4 � cos 4�), D = 0, (13)

where � = 7.848 × 10−6.
The calculations were carried out with the horizontal resolution in longitude and lati-

tude of 0.75, 1, 1.5, 2, and 2.5 degrees (241, 181, 121, 91, and 73 points along latitude,
respectively). The obtained velocity field was compared with the known analytical field;
namely, the normalized l2 errors (defined in [32]) for u and v components were calculated.
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FIG. 1. Normalized l2 errors of u and v fields as functions of resolution (in degrees) for Rossby–Haurwitz
test solutions (2D, solver based on second-order central differences; cmp, solver based on compact schemes).

The results given in Fig. 1 confirm the advantages of the proposed algorithm over the stan-
dard second-order solver. They also show that the proposed algorithm demonstrates the
third-order convergence.

Another test was carried out using the artificial distribution with the strong cross-polar
flow [1]. In this case,

u = U0(sin �(sin2 � − 3 cos2 �) sin � − 0.5 cos �),

v = U0 sin2 � cos �,

and the associated vorticity and divergence are

� = U0

a
(cos �(16 cos2 � − 13) sin � − sin �),

D = −U0

a
cos � sin � cos �,

where U0 = 30 m/s.
The same error measures for this test are given in Fig. 2. One can see again that the

proposed solver demonstrates significantly better accuracy than the standard second-order
scheme.

This test was repeated with the real data winds for 500 hPa on the 15th of January, 1996,
extracted from the archives of the European Center for Medium Range Weather Forecasts
(ECMWF). The resolution was fixed at 1.5 degrees. In this case, the vorticity and divergence
were calculated numerically using sixth-order compact differencing. The results, including
the normalized mean error for the u component of the wind (which gives rise to the change in
angular momentum of the atmosphere) are given in Table I. Again we observe the advantage
of the proposed solver over the second-order scheme. In this case, the difference between
two methods is smaller, since the numerical differentiation of velocity field introduces some
error, equal for both solvers.
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FIG. 2. Normalized l2 errors of u and v fields as functions of resolution (in degrees) for cross-polar flow test
solutions (2D, solver based on second-order central differences; cmp, solver based on compact schemes).

Considering geographical distribution of errors in all considered cases, one can note that
maximums of errors are localized at near-pole rows (not shown). The magnitude of error
in all areas except two to three near-pole rows of the grid is 3–10 times less (depending on
the test case) than the maximum value.

Now we compare the cost of the proposed and standard solvers for the reconstruction
of velocity. If all coefficients that do not depend on the right-hand side are precomputed
and stored, the solution of the Poisson equation for a given Fourier component requires
21 floating-point operations per latitudinal grid point, while the standard solver requires
only five operations. The differentiation of the streamfunction and velocity potential in
Fourier space adds 11 operations for the proposed scheme and four operations for the
standard solver (per equation). Both solvers need direct and inverse fast Fourier transforms
(FFT). The cost of a single FFT can be approximately estimated as 4N (log2 N ) operations
(depending on factors which compose N ; see [30]), which gives 29 operations per grid point
for 2 degrees of resolution. So the cost of the compact scheme in the considered problem is
partially masked by the cost of the FFTs. For the resolutions considered, the solver based
on compact schemes is less than 1.5 times more expensive than the second-order one.
This price seems to be affordable, given the accuracy of the suggested scheme, which is at
least four times higher for real fields (three to four orders of magnitude for smooth fields).
Thus, at worst, the proposed solver is 2.6 times more efficient than the standard one. The
efficiency increases with the increase in the resolution due to the higher convergence rate
of the proposed scheme and the relative increase in the FFT cost.

TABLE I

Normalized l2, Maximum, and Mean Errors for Real-Data Winds

Solver ERR2 (u) ERR∞ (u) ERR2 (v) ERR∞ (v) ERRM (u)

Second order 0.0109 0.0251 0.0126 0.0223 3.49 × 10−4

Compact 0.00103 0.00916 0.00143 0.00627 6.43 × 10−5
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3. FORMULATION OF THE SHALLOW-WATER MODEL AND ITS DISCRETIZATION

The first semi-Lagrangian shallow-water model that used potential vorticity as one of
prognostic variables was [23]. Bates et al. [2] created the global shallow-water potential-
vorticity-based model using the nonlinear discrete formulation. The idea was that the use of
the potential vorticity combined with the nonlinear continuity equation could give a better
representation of nonlinear atmospheric dynamics. They used the multigrid technique to
solve a coupled system of nonlinear equations. The results of the 1-month integration of the
Rossby–Haurwitz wave number 4 were promising. However, it is difficult to generalize this
approach to the 3D case. In our global shallow-water model, the absolute vorticity is used
as one of the prognostic variables. Momentum equations written in the vector form are used
to obtain the RHS of the divergence equation, as we want to avoid the appearance of the
metric terms. Using the momentum equations, the metric terms are absorbed in the rotation
operators, as described in [1]. Explicit integration of these terms would lead to instability.
The so-called “advected” Coriolis term suggested in 1990 by Rochas [18] is used in the
momentum equations, which allows use of the coordinate system with the rotated pole in
the two-time-level semi-Lagrangian semi-implicit discretization without loss of stability.

We start with the shallow-water equations on the sphere written with the modification
proposed in [19] aimed to suppress the spurious orographic resonance in the discretized
semi-Lagrangian equations. They are the absolute vorticity equation

d(� + f )

dt
= −(� + f )D.

Momentum equations written in the vector form on the sphere are used only to obtain the
right-hand side for the discrete divergence equation,(

d(V + 2� × r)

dt

)
H

= −∇	 − ∇	s . (14)

The continuity equation is written as

d(	 + 	s)

dt
= −	D + V · ∇	s .

Here r is the radius vector of the current point (� × r = (|�|a cos �, 0) if the poles of
geographical and computational grids coincide), 	 is the depth of the fluid multiplied by
g, 	s is the surface geopotential (height of the mountains multiplied by g), � is the vector
of angular velocity of Earth’s rotation directed through the Northern pole, f = 2|�| sin �

is the the Coriolis parameter, V is the horizontal velocity vector, D is the divergence, d/dt
is the three-dimensional Lagrangian derivative, and(

dV
dt

)
H

= horizontal projection of

(
dV
dt

)
.

The temporal discretization is based on the two-time-level scheme, with the extrapolation
of nonlinear terms in the continuity, the vorticity equations to the intermediate time level
n + 1/2, and the linearized treatment of fast gravity waves (semi-implicit scheme) leading
to Helmholtz-type equations to be solved at each time step. Such discretization is described
in detail in [1]. We use the temporal decentering in the divergence and continuity equations
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while using a centered-in-time scheme for the voriticity equation, as in [11], to suppress
the spurious orographic resonance intrinsic to the semi-Lagrangian models [19].

The temporal discretization of the governing equations is as follows (the asterisk denotes
the values at the departure points of trajectories).
The absolute vorticity equation is

� n+1 + f

(
1 + �t

2
D

)n+1

= � n
∗ + f∗

(
1 − �t

2
D

)n

∗
− �t

2
(� D)n+1/2

∗ − �t

2
(� D)n+1/2.

(15)

The discrete divergence equation is written as

Dn+1 = −1 + 	

2
�t∇2(	′n+1 + 	s) + Ã, (16)

where 	 is a small first-order decentering parameter, �t is the time step, and

Ã = 1

a cos �

(
∂ A�

∂�
+ ∂ A� cos �

∂�

)
,

A� = 
1 Rn
u∗ + 
2 Rn

v∗ − 2|�|a cos �n+1, A� = −
2 Rn
u∗ + 
1 Rn

v∗,

for the case when the poles of geographical and computational grids coincide. Rn
u∗ and

Rn
v∗ are known quantities of the momentum equations at the nth time step evaluated at the

departure point

(
Rn

u∗, Rn
v∗
) = (V + 2� × r)n

∗ − 1 − 	

2
�t(∇	 + ∇	s)n

∗,

and 
1 and 
2 describe the change of orientation of a vector at the departure point as seen
from the arrival point [1].

One can note that if one uses high-order finite differences on the unstaggered grid, the curl
of the discretized momentum equations (14) may not be consistent with Eq. (15). Indeed,
in this case it is very difficult to obtain an exact cancellation between the cross-derivatives
of 	.

Finally, the continuity equation is discretized as follows:

(	′n+1 + 	s) − (	′n + 	s)∗
�t

= −1 + 	

2

(
	̄Dn+1 + (	′ D)n+1/2

)− 1 − 	

2

(
	̄Dn

∗ − (	′ D)n+1/2
∗

)
+ 1 + 	

2
Vn+1/2 · ∇	s + 1 − 	

2

(
Vn+1/2 · ∇	s

)
∗. (17)

Here 	′ = 	 − 	̄, where 	̄ is the reference height.
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The values at the intermediate time level n + 1/2 for some function p are obtained from
the extrapolation pn+1/2 = 3/2pn − 1/2pn−1 Such extrapolation is also used to obtain the
velocity components at time n + 1/2 necessary to find the departure points. The linear terms
are averaged along the semi-Lagrangian trajectory, while the nonlinear terms are averaged
between the departure and arrival points at time level n + 1/2. Note that such extrapolations
can be unstable [13]. Indeed, the instability was found in the high-resolution 3D models,
mostly when applied to the vertical component of velocity [4].

In the global shallow-water model based on potential vorticity equation [2], it was found
necessary to use the linearized treatment of the Coriolis parameter in the vorticity equation
to prevent the instability (also originating from the use of a time-extrapolated wind field to
determine the departure points). This problem is solved as in [26], by separating the Coriolis
parameter to be estimated at the departure point from the other terms of this equation. Then,
rather than interpolate it, we calculate it analytically from the known latitude of the departure
point. This requires an additional interpolation for the term (1 − �t

2 D)n
∗ (see also [6, 13]

for the analysis and development of stable two-time-level semi-Lagrangian schemes).
Using (16) to eliminate Dn+1 from Eq. (17), we obtain the Helmholtz equation for 	′ to

be solved at each time step.

∇2	′n+1 − �2	′n+1 = H,

where

�2 =
[(

1 + 	

2
�t

)2

	̄

]−1

,

H = �2

(
1 − 	

2
	̄�t

(
Ã − 1 + 	

2
�t∇2	s

)
+ B	

)
,

and where B	 represents the known terms of the continuity equation (similar to Bu, Bv). This
equation is discretized in Fourier space in a way similar to the Poisson equation described
in the previous section.

At the poles, we make use of the fact that the scalar field 	′ can have only a zeroth
Fourier coefficient not equal to zero. The resulting tridiagonal 2 × 2 matrix equation with
complex unknowns is solved for each Fourier harmonic using the block-tridiagonal Gauss
elimination. Again, all the coefficients for matrix inversion that do not change with time
are precomputed and stored.

The next step is to obtain Dn+1 and relative vorticity � n+1 from (17) and (15), respectively.
Then the horizontal velocity field is restored using the algorithm presented in the previous
section.

The model includes the implicit fourth-order diffusion acting on the divergence field only,
implemented in Fourier space with the finite-volume representation in latitude [27]. This
algorithm, allowing variable resolution in latitude, is a generalization of the one presented
in [10]. The implicit fourth-order diffusion equation is reduced to the system of two second-
order equations, which is solved using 2 × 2 block-tridiagonal matrix inversion in latitude.
As the divergence field is already in Fourier space, there is no additional Fourier transforms.
This diffusion acts in a way similar to the filters described in [20]. For other fields, the
intrinsic diffusion of the interpolation process was found to be sufficient.

The implementation of the model is organized as follows. Calculations in the grid-point
space consist of the computations of the quantities from Eqs. (15)–(17) at time level n, the
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trajectory search algorithm, and the interpolations of these quantities. Then the direct fast
Fourier transforms for the interpolated quantities follow. The semi-implicit time stepping,
the reconstruction of the horizontal velocity from the divergence and vorticity, and the
horizontal diffusion of divergence are carried out in the space of longitudinal Fourier coef-
ficients. Finally, the inverse fast Fourier transforms restore grid-point values of prognostic
variables.

In the semi-Lagrangian advection part, the cubic spline interpolation with the approximate
inversion of the tridiagonal operators is used to calculate the quantities at departure points
of trajectories. The approximate inversion allows use of a limited stencil of interpolation,
which facilitates the parallel implementation of the full 3D model.

The algorithm for finding the departure points of trajectories on the sphere is described in
[34]. The linear interpolations are used to estimate extrapolated velocities at the midpoints
of trajectories.

Let us discuss the cost of the proposed scheme with respect to the known methods. Clearly,
it is more expensive than the classical u–v second-order finite-difference semi-Lagrangian
model using the staggered C grid—the integration of vorticity and divergence equations
requires two interpolations of quantities at the departure point per equation (while for the
u–v model one interpolation per u and v equation is sufficient). One also needs to reconstruct
the velocity field from divergence and vorticity. However, in the full 28-level 3D SL-AV
model, including the parameterizations of the subgrid scale processes (which account for
60.5% of total CPU time of the model), the cost of the solver for the reconstruction of
velocities (including the cost of additional fast Fourier transforms) was found to be 2.2%.
The cost of integration of the vorticity equation (which looks more complex in the 3D
case) is 5.3%. These costs seems to be affordable, given that for most complex tests from
the set [32] the proposed scheme is more accurate and efficient than the classical finite-
difference model (see below). On the other hand, the proposed model is clearly more efficient
than the spectral semi-Lagrangian model, especially for high resolutions, where the cost
of the Legendre transforms in the spectral method grows dramatically. It is also somewhat
easier to implement on parallel computers with distributed memory, as the load balancing of
computations in the spectral space is very complicated due to the commonly used triangular
truncation.

4. RESULTS OF THE STANDARD TEST SET FOR SHALLOW-WATER MODELS

Here we describe the results for the standard test set for shallow-water equations on the
sphere [32].

As was discussed in [33], for a climate model with low resolution, there is no benefit from
using the semi-Lagrangian advection. So the tests were carried out using the resolutions of
2.5, 2, and 1.5 degree in longitude and latitude. We compare our results with the reference
spectral Eulerian semi-implicit model [8] and explicit Eulerian models with the usual,
compact finite difference and Fourier derivative calculations and twisted icosahedral grid
[20, 22]. These papers contain error measures for all tests from [32].

The time step is 1 h for 2.5 and 2 degrees of resolutions; for the resolution of 1.5 degrees
the time step is 45 min. The initial states were initialized using the digital filter initialization
[12] with a cutoff period of 6 h. The normalized l2 height errors at the end of all tests for
different resolutions are summarized in Table II. For cases from 2 to 4, the normalized l2

errors are given between the computed and the analytic height field. For cases 5–7, there is
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TABLE II

Normalized l2 Height Errors

Resolution Test 2 Test 3 Test 4 Test 5 Test 6 Test 7a

2.5 4.3 × 10−4 5.1 × 10−4 0.014 0.0056 0.0052 0.0027
2 3.1 × 10−4 4.1 × 10−4 0.0096 0.0054 0.0029 0.0017
1.5 2.3 × 10−4 3.2 × 10−4 0.007 0.0054 0.0016 0.0013

no analytic solution and the results from the NCAR high-resolution (T213) spectral semi-
implicit model are used as a reference [8]. The results of test case 1 for semi-Lagrangian
advection algorithm with different interpolations at the departure point were extensively
discussed in [31], so they are not presented here. Note, however, that the cubic spline
interpolation used in this model gives smaller errors than conventional cubic Lagrange
interpolations.

Test case 2 is a steady-state solution for global nonlinear zonal geostrophic flow. We ran
it for the case 
 = �/4 (where 
 is the angle between the pole of the computational grid
and the axis of solid body rotation) to enable a comparison with the results described in
[20, 22]. This is a trivial problem for the spectral method, since the solution is represented
exactly by the basis functions. Not surprisingly, the error measures of the presented model
are significantly higher for this test (see Fig. 3, left panel). The normalized l2 height error
for different resolutions demonstrates the second-order convergence, since the accuracy of
our model here is limited to that of the algorithm for a trajectory search.

For a Lagrange–Galerkin scheme on the icosahedral grid, this error is somewhat larger
[5], with a slower convergence rate. (Note that the angle 
 is not specified in [5].)

Test case 3 is similar to test case 2 except that the wind field is nonzero in a limited
region. Due to the local nature of the semi-Lagrangian advection algorithm, the increase
in error with respect to the previous test is significantly smaller than for any spectral or
spectral-like method [20, 22] but still the error is much larger than for methods described
in the mentioned papers (Fig. 3, right panel).

As was mentioned in [8], the numerical schemes alternative to the spectral method do
not have to perform as well at these tests to be considered viable for practical applications.

Test case 4 is a forced nonlinear system with a translating low. The velocity parameter
was u0 = 20 m/s. The forcing for the vorticity equation is calculated by applying the
curl operator to the forcing for the momentum equations. The second-order accuracy in
time requires the forcing to be averaged along the semi-Lagrangian trajectory. Since the
momentum equations are written in the vector form on the sphere, the metric terms are
absent in the discrete equation (16). In order to avoid an inconsistency between the forcing
[32], where these term are present, and Eq. (15), we replace the original forcing with its
semi-Lagrangian form discretized in time. It was noted in [20] that the time truncation error
is dominant in this test. Indeed, the graphs of the l2 height error for different resolutions
show little difference (Fig. 3, lower panel). As the forcing is modified, the direct comparison
with the results of [20, 22] is not possible.

Test case 5 is zonal flow over an isolated mountain. Here we cannot obtain good conver-
gence to the reference solution, for two reasons. First, the zonal flow initial condition is not
in geostrophic equilibrium with the topography, resulting in gravity waves of significant
amplitude. These waves are poorly resolved by the semi-implicit reference solution, and the
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FIG. 3. Normalized l2 height errors for tests 2–4 with different resolutions (in degrees).

FIG. 4. Normalized l2 height errors for tests 5 and 6 with different resolutions (in degrees).
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l2 height error for any method has an uncertainty of about 10−3 [22]. Second, the specified
orography (which is not continuously differentiable) cannot be accurately represented by
the spectral method. The normalized l2 height error of the presented model is of the order
of mentioned uncertainty (Fig. 4, left panel). In this test, the initialization was omitted.

Test case 6 is the Rossby–Haurwitz wave number 4 (Eqs. (12) and (13)). The graphs of
the temporal evolution of the normalized l2 height error are depicted in Fig. 4 (right panel).
The model was found to maintain the initial shape of this wave for at least 1 month. The
initial global field of geopotential height and its shape after 1, 7, and 14 days of model
integration are shown in Figs. 5 and 6, respectively. (See [25] for a discussion about shape
of Rossby–Haurwitz wave in different models.)

The normalized l2 height error is 1.5 times higher for our model with 1.5 degrees of
resolution (time step-45 min) than for a spectral method with a slightly higher resolution,

FIG. 5. Initial height field of geopotential height (m) for Rossby–Haurwitz wave (test 6) and its shape after
1 day of integration (2 degrees of resolution).
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FIG. 6. Evolution of Rossby–Haurwitz wave (test 6) after 7 and 14 days of integration. (2 degrees of resolution).

T85, and explicit time stepping (time step-90 s) [20] but about two times lower than for a
spectral model with a (closest lower) resolution of T63, semi-implicit time stepping, and a
time step of 15 min [8]. Consider now the results of the presented model with 2.5 degrees
of resolution, which is equivalent to a T42 spectral resolution. In our model with the time
step of 1 h, the normalized l2 height error after 14 days (0.0052) is slightly larger than for a
spectral model with the explicit time stepping and a time step of 3 min (0.0044) but is nearly
the same as for a semi-implicit spectral model with a time step of 20 min (0.0054). The
uncertainty of the l2 norm for this test is about 0.0008 [22]. Note also that for the spectral
method the representation of the initial condition in this test is trivial. Comparing the result
of this test with the explicit finite-difference u–v Arakawa–Lamb model, one can note that
the proposed scheme is two times more accurate than the Arakawa–Lamb model with the
same resolution of 2.5 degrees [22].
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FIG. 7. Normalized l2 height errors for tests 7a–7c with different resolutions (in degrees) as functions of
forecast time (in hours).

Test case 7 is three real-data cases. The global normalized l2 height errors for these tests
with respect to the high-resolution (T213) spectral Eulerian model solution [8] are given
in Figs. 7a–7c. One can see that the errors for the 2 degrees of resolution are better than
those of solutions obtained with a spectral Eulerian model with a little bit higher equivalent
resolution (T63, 1.875 degrees) and a time step four times smaller [8, Fig. 5.11]. For the
resolution of 1.5 degrees, the error is smaller than for the equivalent T85 spectral model
and is the same as for the model with a higher resolution, T106. The similar result was
obtained for the Eulerian model based on fourth-order compact finite differences [20]. As
was discussed in [20], it can be attributed to the fact that the spectral model can use at
maximum two-thirds of its waves due to triangular truncation (in a Eulerian 3D model
typically only half of all waves are retained). One can note again that the proposed scheme
is two times more accurate on this test than the explicit Arakawa–Lamb model for the
resolution of 2.5 degrees [22]. The uncertainty of the l2 norm for this test is 0.00015
[22].

For one of these cases, namely for the initial data of 0000 UTC 21 December 1978, we
also present the reference solution of the T213 model at day 5 of integration and the solution



198 MIKHAIL A. TOLSTYKH

FIG. 8. Reference high-resolution solution at day 5 (left), and the solution of the model (2 degrees of resolution)
on day 5 (right) for the 21 December 1978 case (test 7a). Decentering parameter, 	 = 0.01; diffusion coefficient,
K D = 1 × 1013 m4/s.

given by our model with 2 degrees of resolution (Fig. 8). One can see that the solution near
the northern pole is free of noise and agrees well with the reference solution.

This test was also repeated with the commonly used cubic Lagrangian interpolation to
estimate quantities at the departure points of trajectories. In agreement with the results
of the previous version of the model [26], the cubic Lagrangian interpolation gives larger
errors than the spline interpolation (not shown). Further analysis has shown that the most
significant response to the changes in interpolation is observed in the vorticity equation
while other equations are sensitive, to a minor extent, to the type of interpolation.

5. CONCLUSIONS

The semi-Lagrangian representation of advection allows circumventing of the CFL re-
striction on time steps, which is especially severe for finite-difference models on the regular
spherical latitude–longitude grid, making it possible to achieve high efficiency in these
models.

The global semi-Lagrangian finite-difference shallow-water model was presented. The
distinct features of this model are the use of vorticity and divergence as prognostic variables
in conjunction with the fourth-order compact finite differences for discretization of the
nonadvective terms on the unstaggered regular latitude–longitude grid. The key point of
this approach is the solution of the Poisson equations on the sphere, which is necessary for
reconstructing the velocity field from vorticity and divergence. The accurate and efficient
direct solver for this problem was described. This solver uses fast Fourier transforms in the
longitudinal direction. The solution of the elliptic problem arising in the semi-implicit time
stepping algorithm and the horizontal diffusion of divergence are also carried out in Fourier
space.

The proposed model is more expensive than the classical u–v second-order finite-differe-
nce semi-Lagrangian model using the staggered C grid, since we have to make additional
interpolations of quantities at the departure points of trajectories and to reconstruct the
velocity field from divergence and vorticity. However, in the full 3D version of the model,
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including the parameterizations of the subgrid scale processes, the associated overhead is
only 7.5% of the CPU time per time step. This increase in cost is offset by the increased
accuracy of the model with respect to the classical u–v second-order finite-difference for-
mulation on the staggered grid. On the other hand, the proposed model is more efficient
than the spectral semi-Lagrangian model, especially for high resolutions, where the cost of
the Legendre transforms in the spectral method grows dramatically.

The standard test set for shallow-water equations on the sphere was carried out with the
presented model. The results show that it cannot compete with the spectral model on the
simplest tests from this set where the solution can be obtained analytically by the spectral
model. However, on more realistic tests it demonstrates the accuracy equal or superior to
the Eulerian spectral model of equivalent resolution, with the time steps several times larger
than for the latter.

The 3D version of the model already exists and recently successfully passed the 3-year
integration with the prescribed analytic forcing [7]. These results will be published in a
separate paper. The variable resolution in latitude is being implemented currently.
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